

муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 31 со спортивным уклоном города Пятигорска Ставропольского края

357538 Россия, Ставропольский край, г. Пятигорск, улица Мира,187 телефон (879 3) 98-11-25 факс (879 3) 98-11-25

Конспект урока

Предмет	Физика
Класс	10
Учитель	А.В.Гусева
Дата урока	2104.2020
Тема урока	Закон Ома для участка цепи. Сопротивление. Электрические цепи
Основной вид учебной деятельности	Комбинированный урок

Ход урока

І. Организационный этап.

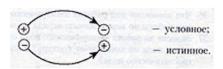
- Доброе утро, ребята!

Прежде чем приступить к изучению нового материала давайте вспомним: Ответы запишите в тетрадь

*Ч*то такое электрический заряд?

Чем различаются заряды в проводнике и диэлектрике?

Какие вещества хорошо передают заряды от одного тела к другому?


Что является источником электрического поля? Как поле действует на заряды?

II. Изучение нового материала

Откройте учебник на стр.335 или пройдите по ссылке https://resh.edu.ru/subject/lesson/5901/main/48868/

Электрический ток - упорядоченное движение заряженных частиц (свободных электронов или ионов).

При этом через поперечное сечение проводника перносится электрический заряд (при тепловом движении заряженных частиц суммарный перенесенный электрический зпряд = 0, т.к. положительные и отрицательные заряды компенсируются).

Направление электрического тока - условно принято считать направление движения положительно заряженных частиц (от + κ -).

Действия электрического тока (в проводнике):

тепловое действие тока - нагревание проводника (кроме сверхпроводников);

химическое действие тока - проявляется только у электролитов, при этом на электродах выделяются вещества, входящие в состав электролита;

магнитное действие тока (основное) - наблюдается у всех проводников (отклонение магнитной стрелки вблизи проводника с током и силовое действие тока на соседние проводники посредством магнитного поля)

Количественная характеристика электрического тока

$$I = \frac{\Delta q}{\Delta t}$$
, $I - \text{скаляр}$,

Сила тока - это отношение заряда q, перенесенного через поперечное сечение проводника за интервал времени t к этому интервалу.

Постоянный ток - электрический ток, у которого сила тока со временем не меняется.

Сила тока зависит от заряда частицы, концентрации частиц, скорости направленного движения частиц и площади поперечного сечения проводника.

$$T = 20 \cdot 10^3 \div 30 \cdot 10^3 \text{ K}$$

$$I = \frac{Q}{t} = \frac{\mathbf{q} \cdot N}{t} = \frac{\mathbf{q} \cdot nV}{t} = \frac{\mathbf{q} \cdot nS\Delta l}{t}$$

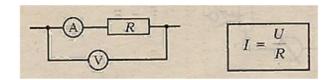
$$I = \mathbf{q} \cdot n \cdot S \cdot \mathbf{v}$$

$$v_e$$
 - мала (мм/с); $v_{\text{поля}} = c = 300\ 000\ \text{км/с}$

где S - площадь поперечного сечения проводника, qo - электрический заряд частицы, n - концентрация частиц, v - скорость упорядоченного движения электронов.

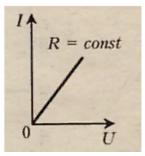
Единица измерения силы тока:

$$[I] = K\pi/c = A.$$


Условия, необходимые для существования электрического тока:

- наличие свободных электрически заряженных частиц;
- наличие внутри проводника электрического поля действующего с силой на заряженные частицы для их упорядоченного движения (свободные электроны по инерции, без действия силы, перемещаться не могут из-за тормозящего воздействия на них кристаллической решетки).

Если в проводнике существует электрическое поле, то между концами проводника есть разность потенциалов.


Если разность потенциалов постоянна во времени, в проводнике течет постоянный ток.

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ

где U - напряжение на концах участка цепи, R - сопротивление участка цепи. (сам проводник тоже можно считать участком цепи).

Для каждого проводника существует своя определенная вольт-амперная характеристика.

III. Контроль и коррекция знаний

Домашнее задание на 23.04: учебник § 101, 102 Выписать и выучить основные определения и формулы отвечать на вопросы после параграфов

Егэ стр.337, 340

IV. Фото/или скриншот домашнего задания высылайте на почту: guseva_klass2020@mail.ru

муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 31 со спортивным уклоном города Пятигорска Ставропольского края

357538 Россия, Ставропольский край, г. Пятигорск, улица Мира,187 телефон (879 3) 98-11-25 факс (879 3) 98-11-25

Конспект урока

Предмет	Физика
Класс	10
Учитель	А.В.Гусева
Дата урока	23.04.2020
Тема урока	Работа и мощность тока
Основной вид учебной деятельности	Комбинированный урок

Ход урока

II. Организационный этап.

- Доброе утро, ребята!

II. Изучение нового материала

Внимательно посмотрите видеофрагмент

https://resh.edu.ru/subject/lesson/4741/main/150964/

Откройте учебник на стр.342 §104

Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась. Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

$$A = U \cdot I \cdot t = I^2 R \cdot t = \frac{U^2}{R} \cdot t$$

По закону сохранения энергии: работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока. В системе СИ:

$$[A] = B \cdot A \cdot c = Br \cdot c = Дж$$

$$1 \text{ кВт} \cdot \text{ч} = 3 600 000 \ Дж$$

ЗАКОН ДЖОУЛЯ –ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам. Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

$$A = Q = U \cdot I \cdot t = I^{2}R \cdot t = \frac{U^{2}}{R} \cdot t$$

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время. В системе СИ: [Q] = 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА - отношение работы тока за время t к этому интервалу

времени.
$$P = \frac{A}{t} = \frac{U \cdot q}{t} = \frac{U \cdot I \cdot t}{t} = UI$$

В системе СИ:

$$[P] = \mathbf{B} \cdot \mathbf{A} = \mathbf{B}\mathbf{T}$$

Домашнее задание на 27.04: учебник § 104, 105 , Выписать и выучить основные определения и формулы, отвечать на вопросы после параграфов. Егэ стр.345

Фото/или скриншот домашнего задания высылайте на почту: guseva_klass2020@mail.ru