

муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 31 со спортивным уклоном города Пятигорска Ставропольского края

357538 Россия, Ставропольский край, г. Пятигорск, улица Мира,187 телефон (879 3) 98-11-25 факс (879 3) 98-11-25

Конспект урока

Предмет	Геометрия	
Класс	11	
Учитель	А.В.Гусева	
Дата урока	27.04.2020	
Тема урока	Параллельность прямых и плоскостей	
Основной вид учебной деятельности	Урок обобщения и систематизации знаний	

Ход урока

І. Организационный этап.

- Доброе утро, ребята!

II. Обобщение и систематизация материала

Откроите учебник на стр.9 повторите § 1 и 3

Прямая в пространстве – понятие.

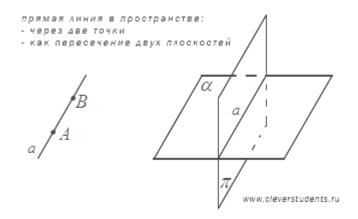
В разделе прямая на плоскости мы дали представление о точке и прямой на плоскости. Прямую линию в пространстве следует представлять абсолютно аналогично: мысленно отмечаем две точки в пространстве и проводим с помощью линейки линию от одной точки до другой и за пределы точек в бесконечность.

Все обозначения точек, прямых и отрезков в пространстве аналогичны случаю на плоскости.

Вообще, прямая линия целиком принадлежит некоторой плоскости в пространстве. Это утверждение вытекает из аксиом:

- через две точки проходит единственная прямая;
- если две точки прямой лежат в некоторой плоскости, то все точки прямой лежат в этой плоскости.

Существует еще одна аксиома, которая позволяет рассматривать прямую в пространстве как пересечение двух плоскостей: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.



Способы задания прямой в пространстве.

Существует несколько способов, позволяющих однозначно определить прямую линию в пространстве. Перечислим основные из них.

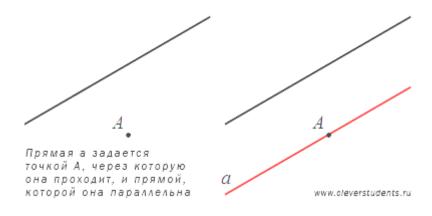
Мы знаем из аксиомы, что через две точки проходит прямая, причем только одна. Таким образом, если мы отметим две точки в пространстве, то это позволит однозначно определить прямую линию, проходящую через них.

Если в трехмерном пространстве введена прямоугольная система координат и задана прямая с помощью указания координат двух ее точек, то мы имеем возможность составить уравнение прямой, проходящей через две заданные точки.

Второй способ задания прямой в пространстве основан на теореме: через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и причем только одна.

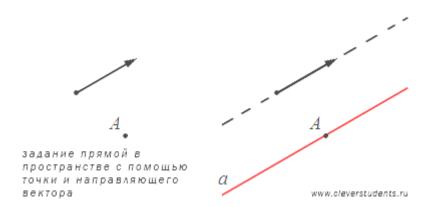
Таким образом, если задать прямую (или отрезок этой прямой) и не лежащую на ней точку, то мы однозначно определим прямую, параллельную заданной и проходящей через данную точку.

Рекомендуем также ознакомиться со статьей уравнение прямой, проходящей через заданную точку параллельно заданной прямой.



Можно указать точку, через которую проходит прямая и ее направляющий вектор. Это также позволит однозначно определить прямую.

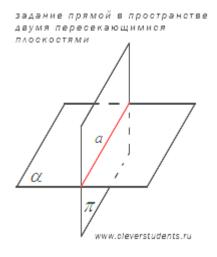
Если прямая задана таким способом относительно зафиксированной прямоугольной системы координат, то мы можем сразу записать ее канонические уравнения прямой в пространстве и параметрические уравнения прямой в пространстве.



Следующий способ задания прямой в пространстве основан на аксиоме стереометрии: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Таким образом, задав две пересекающиеся плоскости, мы однозначно определим прямую в пространстве.

Смотрите также статью уравнения прямой в пространстве - уравнения двух пересекающихся плоскостей.

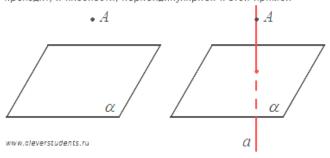


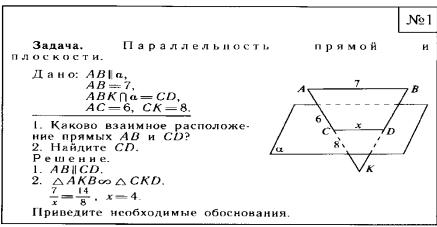
Еще один способ задания прямой в пространстве следует из теоремы (ее доказательство Вы можете найти в книгах, указанных в конце этой статьи): если задана плоскость и не лежащая в ней точка, то существует единственная прямая, проходящая через эту точку и перпендикулярная к заданной плоскости.

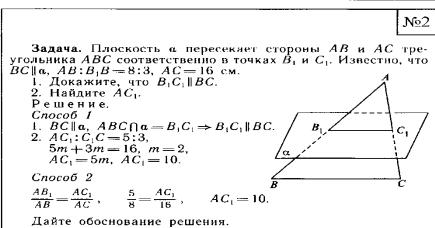
Таким образом, чтобы определить прямую, можно задать плоскость, которой искомая прямая перпендикулярна, и точку, через которую эта прямая проходит.

Если прямая задана таким способом относительно введенной прямоугольной системы координат, то будет полезно владеть материалом статьи уравнения прямой, проходящей через заданную точку перпендикулярно к заданной плоскости.

задание прямой с помощью точки, через которую она проходит, и плоскости, перпендикулярной к этой прямой



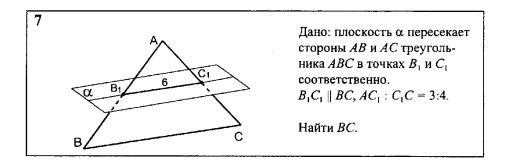




III. Домашнее задание

Учебник § 1,2,3,4 повторить

1) Решение задач на готовых чертежах (компьютерные слайды по материалам сборника Е.М.Рабиновича №3,4,5,7)



Краткие указания к решению задач на готовых чертежах:

№3. Доказательство: т.к. $a \parallel b$, то $a \parallel \beta$, откуда $a \parallel c$.

№4. Указание. Выбрать на прямой a точку A и провести через точку A и прямую b плоскость γ . Доказать, что прямая a лежит в этой плоскости.

№5. Доказательство: предположим, что $a \parallel \alpha$. Через M и a проведём плоскость. Она пересекает плоскость α по прямой c, параллельной a. Тогда через точку M проходят две прямые, параллельные прямой a. Приходим к противоречию.

№7. BC = 14. Указание: рассмотреть подобные треугольники $\triangle ABC$ и $\triangle AB_1C_1$.

Фото/или скриншот домашнего задания высылайте на почту: guseva_klass2020@mail.ru

муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 31 со спортивным уклоном города Пятигорска Ставропольского края

357538 Россия, Ставропольский край, г. Пятигорск, улица Мира,187 телефон (879 3) 98-11-25 факс (879 3) 98-11-25

Конспект урока

Предмет	Геометрия	
Класс	11	
Учитель	А.В.Гусева	
Дата урока	29.04.2020	
Параллельность прямых и плоскостей	Параллельность прямых и плоскостей	
Основной вид учебной деятельности	Урок обобщения и систематизации знаний	

Ход урока

І. Организационный этап.

- Доброе утро, ребята!

II. Обобщение и систематизация материала

Перпендикулярность прямой и плоскости

Перечень вопросов, рассматриваемых по теме

- 1. Ввести понятие перпендикулярных прямых в пространстве;
- 2. Доказать лемму о перпендикулярности двух параллельных прямых;
- 3. Решать задачи по теме.

Глоссарий по теме

Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90°. Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися.

Прямая называется **перпендикулярной** к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости

Теорема о прямой перпендикулярной к плоскости. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

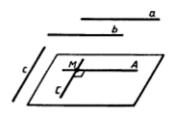
Открытые электронные ресурсы:

Перпендикулярность прямой и плоскости. http://school-collection.edu.ru // Единая коллекция цифровых образовательных ресурсов.

Перпендикулярность прямой и плоскости. https://www.yaklass.ru // Я-класс. Образовательный портал Сколково.

Теоретический материал для самостоятельного изучения

Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой..



Доказательство:

Дано: $a \parallel b$, $a \perp c$

Доказать: $b \perp c$

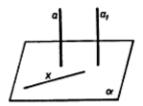
Через точку М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым a и c. Так как $a \perp c$, то \angle AMC=90°.

Так как $b \parallel a$, а $a \parallel MA$, то $b \parallel MA$.

Итак, прямые b и с параллельны соответственно прямым MA и MC, угол между ними равен 90° , т.е. b \parallel MA, с \parallel MC, угол между MA и MC равен 90°

Это означает, что угол между прямыми b и c также равен 90° , то есть b \perp c.

Теорема. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.



Доказательство:

Дано: $a \parallel a_1, a \perp \alpha$

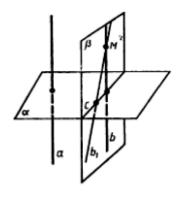
Доказать, что $a_1 \perp \alpha$

Проведем какую-нибудь прямую х в плоскости α , т.е. $x \in \alpha$. Так как $a \perp \alpha$, то $a \perp x$.

По лемме о перпендикулярности двух параллельных прямых к третьей $a_1 \perp x$.

Таким образом, прямая a_1 перпендикулярна к любой прямой, лежащей в плоскости α , т. е. $a_1 \perp \alpha$

Теорема. Ели две прямые перпендикулярны плоскости, то они параллельны.



Дано: $a \perp \alpha$, $b \perp \alpha$

Доказать, что $a \parallel b$

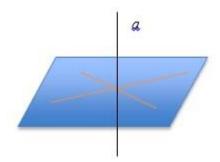
Доказательство:

Через какую-нибудь точку M прямой b проведем прямую b_I , параллельную прямой a.

M ∈ b, $M ∈ b_1$, $b_1 \parallel a$. По предыдущей теореме $b_1 \perp a$.

Докажем, что прямая b_1 совпадает с прямой b. Тем самым будем доказано, что $a \parallel b$. Допустим, что прямые b_1 и b не совпадают. Тогда в плоскости β , содержащей прямые b и b_1 , через точку M проходят две прямые, перпендикулярные к прямой c, по которой пересекаются плоскости α и β . Но это невозможно, следовательно, $a \parallel b$, т.е. $b \in \beta$, $b_1 \in \beta$, $\alpha \cap \beta = c$ (невозможно) $\rightarrow a \parallel b$

Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.



Теорема. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

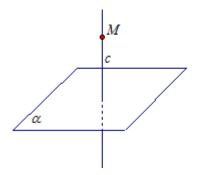


Рис. 2.

Доказательство.

Пусть дана плоскость α и точка M (см. рис. 2). Нужно доказать, что через точку M проходит единственная прямая c, перпендикулярная плоскости α .

Проведем прямую a в плоскости α (см. рис. 3). Согласно доказанному выше утверждению, через точку M можно провести плоскость γ перпендикулярную прямой a. Пусть прямая b — линия пересечения плоскостей α и γ .

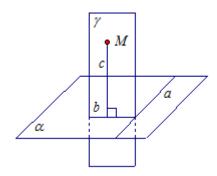


Рис. 3.

В плоскости γ через точку M проведем прямую c, перпендикулярную прямой b.

Прямая c перпендикулярна b по построению, прямая c перпендикулярна a (так как прямая a перпендикулярна плоскости γ , а значит, и прямой c, лежащей в плоскости γ). Получаем, что прямая c перпендикулярна двум пересекающимся прямым из плоскости α . Значит, по признаку перпендикулярности прямой и плоскости, прямая c перпендикулярна плоскости α . Докажем, что такая прямая c единственная.

Предположим, что существует прямая c_1 , проходящая через точку M и перпендикулярная плоскости α . Получаем, что прямые c и c_1 перпендикулярны плоскости α . Значит, прямые c и c_1 параллельны. Но по построению прямые c и c_1 пересекаются в точке M. Получили противоречие. Значит, существует единственная прямая, проходящая через точку M и перпендикулярная плоскости α , что и требовалось доказать.

Теоретический материал для углубленного изучения

Теорема о прямой перпендикулярной к плоскости. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

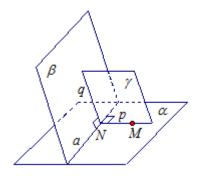


Рис. 1.

Доказательство (см. рис. 1)

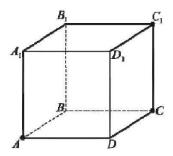
Пусть нам дана прямая a и точка M. Докажем, что существует плоскость γ , которая проходит через точку M и которая перпендикулярна прямой a.

Через прямую a проведем плоскости α и β так, что точка M принадлежит плоскости α . Плоскости α и β пересекаются по прямой a. В плоскости α через точку M проведем перпендикуляр MN (или p) к прямой a, $N \in \alpha$. В плоскости β из точки N восстановим перпендикуляр q к прямой a. Прямые p и q пересекаются, пусть через них проходит плоскость γ . Получаем, что прямая a перпендикулярна двум пересекающимся прямым p и q из плоскости γ . Значит, по признаку перпендикулярности прямой и плоскости, прямая a перпендикулярна плоскости γ .

Примеры и разборы решения заданий тренировочного модуля

Пример 1

Выбор элемента из выпадающего списка



Выпишите ребра, перпендикулярные плоскости (DC C_1).

- \bullet AD, A_1D_1 , BC, B_1C_1
- AD, AC, AD_{l}
- \bullet BC. BA.

Правильный вариант/варианты (или правильные комбинации вариантов):

• AD, A_1D_1 , BC, B_1C_1

Неправильный вариант/варианты (или комбинации):

Все остальные

Подсказка: в кубе все углы по $^{90^0}$. Плоскость (DC $^{\mathcal{C}_1}$), проходит через грань куба DC $^{\mathcal{C}_1\mathcal{D}_1}$.

• **Разбор задания:** Куб – это геометрическая фигура у которой все углы прямые, следовательно нужно увидеть ребра которые перпендикулярны к плоскости (DC C_1), к грани куба (DDC C_1). Эти ребра - AD, A_1D_1 , BC, B_1C_1

Пример 2

Ребус - соответствия.

Закончите предложение, чтобы получилось верное утверждение.

Утверждение:

- Две прямые называются перпендикулярными, если
- Если плоскости перпендикулярна одной из двух параллельных прямых, то она

Варианты ответов:

- угол между ними равен 90°
- перпендикулярна и другой
- параллельны
- один
- она перпендикулярна к любой прямой, лежай в этой плоскости.
- перпендикулярна плоскости.

Правильный вариант/варианты (или правильные комбинации вариантов):

Пре прамие парираются перпенникупарии ими если	угол между ними равен 90°
Если плоскость перпендикулярна одной из двух параллельных	перпендикулярна и
прямых, то она	другой

Неправильный вариант/варианты (или комбинации):

Все остальные.

Подсказка:

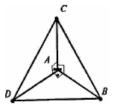
Лемма: Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к третьей прямой.

Теорема: если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

3. Прямые AB, AC и AD попарно перпендикулярны.

Найдите отрезок СD, если:

- 1) AB = 3 cm, BC = 7 cm, AD = 1.5 cm;
- 2) BD = 9 cm, BC = 16 cm, AD = 5 cm;
- 3) AB = b, BC = a, AD = d;
- 4) BD = c, BC = a, AD = d.



Так как прямые AB, AC, AD попарно перпендикулярны, то они образуют 3 прямоугольных треугольника, со смежными сторонами. Тогда:

B ΔABC:

$$AB = 3$$
см, $BC = 7$ см, значит, $AC^2 = BC^2 - AB^2 = 49 - 9 = 40$ (см).

Далее в **ДАСD**:

$$CD^2 = AC^2 + AD^2 = 40 + 2,25 = 42,25$$
 (см²), тогда $CD = 6,5$ (см).

2. B ΔABD:

$$AB^2 = DB^2 - AD^2 = 81 - 25 = 56 \text{ (cm}^2\text{)}.$$

Далее в ДАВС:

$$AC^2 = BC^2 - AB^2 = 256 - 56 = 200 \text{ (cm}^2); AC^2 = 200 \text{ cm}^2.$$

Далее в ∆CAD:

$$DC^2 = AC^2 + AD^2 = 200 + 25 = 225 \text{ (cm}^2\text{)}$$
, to ectb $DC = 15 \text{cm}$.

3. В
$$\Delta$$
CAB : $AC^2 = BC^2 - AB^2$, то есть $AC^2 = a^2 - b^2$.

Далее в
$$\Delta CAD$$
: $CD^2 = AC^2 + AD^2 = (a^2 - b^2) + d^2$, значит,

$$CD = \sqrt{a^2 - b^2 + d^2}$$
.

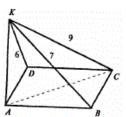
4. B
$$\triangle ADB : AB^2 = DB^2 - AD^2 = c^2 - d^2$$
.

Далее в
$$\triangle ABC$$
: $AC^2 = BC^2 - AB^2 = a^2 - (c^2 - d^2)$.

И в
$$\triangle ACD$$
: $DC^2 = AC^2 + AD^2 = (a^2 - c^2 + d^2) + d^2$, тогда

$$DC = \sqrt{a^2 - c^2 + 2d^2}$$
.

 Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная его плоскости. Расстояние от точки К до других вершин прямоугольника равны 6 м, 7 м и 9 м. Найдите отрезок АК.



Пусть ABCD — прямоугольник, AK \perp ABCD. Значит KC = 9м; пусть KB = 7м, KD = 6м.

 \angle KBC = 90° (по теореме о трех перпендикулярах), поэтому BC² = =KC² - KB² = 9² - 7² = 32 (м²) (по теореме Пифагора).

Далее $AD^2 = BC^2$ (так как ABCD — прямоугольник). Поскольку $KA\bot AD$, то

$$AK = \sqrt{KD^2 - AD^2} = \sqrt{36 - 32} = \sqrt{4} = 2 \text{ (M)}.$$

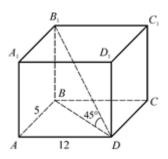
Домашнее задание на 06.05: учебник § 1,2,3 повторить, разобрать задачи в этом конспекте

1. Дано: $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед.

AB = 5, AD = 12,

 $PBDB_1 = 45^{\circ}$.

Найдите BB_1 .

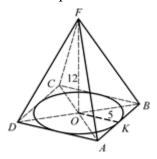


2.Дано: АВСО – ромб,

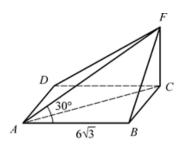
rвписанной окружности = 5, $FO \square (ABC)$,

 $AC \ 3 \ BD = O, \ FO = 12.$

Найдите расстояние от точки F до прямой AB.



3. Дано: ABCD — прямоугольник, $AB = 6\sqrt{3}$, $FC \square (ABC)$, $PFAB = 30^\circ$. Найдите расстояние от точки F до прямой AB.



Фото/или скриншот домашнего задания высылайте на почту: guseva_klass2020@mail.ru